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* Ensuring sustainable access to clean energy and water is
essential for public health and aligns with UN goals 3, 6, 7,
11 and 13.

* In the UK, healthcare facilities are major consumers of
both, contributing significantly to environmental impact.
Improving efficiency in energy and water use is vital for
sustainability and cost savings.

* Advancing technologies—particularly intelligent building
management systems, loT, cloud-based tools, and Al-
driven optimisation—are delivering measurable
Improvements in reducing waste, emissions, and resource
use. This talk will take a deeper dive into progress and
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Motivation: Net Zero, Sustainability and Digitalisation
Net Zero Innovation & NZIIC
Deeper Dive into Digital and Al (CNNs, SNNs, LLMs, ... etc)

Examples:
« Smart Infrastructure
« Smart Manufacturing
« Smart Refuelling
« Smart Recycling

Final Thoughts
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Energy is fundamental to grow and sustain life on earth. | _
= = S ~

But we can also see conflict over territory and dwindling ‘

fuel resources, geopolitical upheaval, rising global 2 SE UL s Faa=al
temperatures, with increasingly dense toxic smog Y B | e
around cities, more frequent occurrence of extreme
weather events and rising toxic waste problems;

There are abundances (of food, clothing, plastics ...) in
the developed world, with significant shortfalls in the
less developed world.

These are some of the rising costs and problems
associated with our traditional ways of life in the last
centuries: positive change is needed.
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- There are 17 UN Sustainable Development Goals:
- End poverty, hunger and discrimination

- Sustainable and Clean Energy, Food & Water
Resources and Sanitation
- Towards an equitable Society

- Access to well-paid, decent work
- Access to Good Education

@)
SUSTAINABLE
DEVELOPMENT

GOALS

- Build resilient infrastructure, promote inclusive
and sustainable industrialization, and foster
innovation

- Climate Action
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Re-Industrialise for a Smarter,
Cleaner World

1997: UK Signs Kyoto
Protocol
Commitment to 12.5% CO,
emissions reductions from

2008: UK Climate Change Act

1990 levels by 2012

Commitment to 80%
reduction in CO, levels by

A4

2015: Paris Agreement
Signed by UK
Global temperatures aimed to
be kept below 2°, with target
1.5°

2050

2019: UK Climate Change Act
Revised
Revised Commitment to
100% reduction in CO, levels
by 2050 (Net Zero)

V

V

Net Zero Timeline

/\

2005: Kyoto Protocol Comes
into Force
Commitment to 12.5% CO,
reduction from 1990 levels by
2012

2012: UK Meets Kyoto
Protocol Targets
18.5% CO, emissions
reductions between 1990 and
2012

N~

/\

2012: UK Signs 2" Kyoto
Protocol
Commitment to 19% CO,

emissions reductions by 2020

2020: UK Meets 2™ Kyoto
Protocol Targets
2" Protocol remains
unratified, Paris agreement
favoured

|4

UK Government

Invest 2035:

The UK’s Modern Industrial S
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& Net Zero: Innovation

NET ZERO i
e, () B,
CENTRE "Decarbonising heat will rely on deep
retrofits for millions of homes and some
mixture of electric heat pumps, hydrogen
boilers and district heating depending on

local circumstances.

In June 2019, the Government
amended the Climate Change

Act from 80% to 100% GHG
emissions reduction — or Net

Zero - by 2050. c o

“Decarbonising industry and
Because of the need for greater transportation will rely on carbon capture,
intermittent renewable INNOVATING hydrogen and other alternative fuels, and
penetration, Net Zero pathways TO NET ZERO electrification depending on local

have.a greater circumstances.
requirement for system \

balancing. This can be achieved
through supply side flexibility,
demand side flexibility and
energy storage in various forms.

Eliminating emissions from buildings is
one of the most difficult challenges facing
the energy sector and requires significant
technological and behavioural innovation.”

Healthcare
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Teesside University is a public
university with its main campus in
Middlesbrough, North Yorkshire in
North East England.

In June 2023 a new £13M Net Zero
Industry Innovation Centre was
opened, to help meet the needs of
decarbonisation of our local industry
cluster.

The UK (and currently World’s)
Largest CCUS Project is underway.
We also have the UK's largest
Hydrogen Hub

Largest growing Net Zero industry
base and innovation zone in UK,
and the fastest growing regional
digital sector in UK.

tees.ac.uk/netzero

Teesside University & NZIIC
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3IR (Digital Infrastructure | wem | Al

Revolution) Digitization
Microprocessors 4G /5G /6G /0T / (Deep) Machine Learning
Automation / Robotics WEB 3.0 / IPv6 / Diffserv / Advanced Mathematics/Statistics
Flexible Manufacturing TSN/ IPSEC / Cybersecurity Predictive Analytics
Internet / DLT / Blockchain Optimization / Decision Support

Generative Al / LLMs

. e Healthcare
tees.ac.uk/netzero Facilities
Management
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“Artificial intelligence (Al) refers to the simulation of
human intelligence in machines that are
programmed to think and learn like humans. These
systems can perform tasks that typically require
human intelligence, such as learning, problem-
solving, perception, and decision-making.

Al encompasses a wide range of technologies,
iIncluding machine learning, natural language
processing, and computer vision, and is used in
various applications, from personal assistants to
self-driving cars.”

N Healthcare
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Blockchain ([ Big Data & Artificial Intelligence |
« Smart Energy Contracts and Balancing » Energy analytics and forecasting
Services, Energy Trading * Quantifying and Trading Emissions
* Data visibility & control, DLT « Economic dispatch and balancing
* Improved CUStOdy trail & traceability . De_risking trade finance access
» Atomic settlement for transactions )
S

 Digital Identity / Cryptography

» Secure Electronic Documentation
» Trusted Energy Value Chain Visibility

Internet of Things

\J demand and environmental variables
s < RPA for Renewables Integration, « Secure and private Energy Trading

Demand response and VPPs « Intrusion detection and authentication
« Digital Twinning and User Interaction | | )

Healthcare
tees.ac.uk/netzero Facilities
Management
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Smart Apps for Building Energy Control
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Smart Marine Infrastructure
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Smart Solar Integration
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> : : ! i Cout L : H Abstract—The efficiency of solar PV systems is significantly  speed by considering future behaviour, leading to improved
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i - b i N Masimum Power Point Tracking (MPPT) techaiques fo ensure  oeillations and improves transient response, particularly
. " ' : IGBT Diode i i operational efficiency. Conventionally deployed methods, such oo B0 "0 e e e ;
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on solar PV applications where real-
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techniques to improve PV system efficiency.
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these variations, Maximum Power Point Tracking (MPPT)
techniques are employed to ensure that the PV system
operates at its Maximum Power Point (MPP), thereby
optimising energy extraction.

Traditional MPPT methods, such as the Perturb &
Observe (P&O) algorithm, are widely used due to their
y and ease of impl P&O MPPT operates.

A. Conventional MPPT Methods

Among the conventional MPPT techniques, Perturb &
Observe (P&O) and Incremental Conductance (INC) remain
widely used due to their simplicity and cost-effectiveness
[5]. P&O MPPT operates by iteratively adjusting the duty
cycle of the DC-DC converter and observing changes in
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 Energy efficiency solutions for buildings - Electrical Energy Slngapore

Efficiency/District Cooling Efficiency and Renewables Integration

Markets/Billing
e Visualisation
)~
V= . Weather

-+ The purpose of the project is to develop
— (increase TRL), configure and

oy - e demonstrate an loT-based energy

i 9] = Si-tuaﬂon management system in large-scale pilots

& involving multiple buildings, renewable
Integration

technologies and District Cooling Plant
(DCP) in Abu Dhabi, Singapore and Saud..

| The principal goal is to improve energy
R and asset efficiency and leverage direct
and indirect cost reductions, and to enable
better integration of local renewable
resources (Solar, Wind) in real-world
practical situations.

P Connection

S[RIRIRIR
°
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Cloud/Server
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o 2l
— HVAC lights appliances
. J
Occasional
data ~
synchronization SNN-based decision module
| ]
1 [ real-time decisions Setuators
(HVAC. lighting. appliances)
. /

i

d Edge computing layer

Edge devices:
Intel Loihi, SpiNNaker, NVIDIA

- — — =

Local AI processing :
SNN Processing

Module

Jetson, ARM Cortex-M

Sensing layer

L

4 U

N

o

water temperature occupancy humidity energy usage

/

tees.ac.uk/netzero

Event Rule- CNN | LSTM | RNN GRU SNN | BO-STDP-SNN
based (our proposed
model)
Occupant 800 250 180 190 170 60 50
enters room
Temperature 900 280 200 210 190 70 60
exceeds
threshold
Appliance 850 300 210 220 200 65 45
left ON

SNN-Based Automation in Buildings

Article

Energy and water management in smart buildings using spik-
ing neural networks: A low-power, event-driven approach for
adaptive control and anomaly detection

Malek Alrashidi !, Sami Mnasri 2**, Maha Algibly !, Mansoor Alghamdi !, Michael Short 3, Sean Williams ?,
Nashwan Dawood 3, Ibrahim S. Alkhazi 4, Majed Abdullah Alroywaily 3

+ Department of Computer Sciences, Applied College, University of Tabuk, Tabuk, 47512, Saudi Arabia;

2 IRIT (CNRS) laboratory, RMESS team, University of Toulouse II, Blagnac 31703, France; Sami MnasriGiritfr

* Department of School of Compu and Digital Teesside Univer-
sity, Middlesbrough TS1 3BX, United Kingdom; M.Short6tees.ac.uk, Sean.Williams@tees.acuk,
N.N.DawoodGtees.ac.uk

+ College of Computers & Information Technology, University of Tabuk, Tabuk, 47512, Saudi Arabia;
ialkhazigutedusa

¢ Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka,
72386, Saudi Arabia; malrowaily@ju.edu.sa

* Correspondence: smnasri@ut.edu.sa

Abstract: The growing demand for energy efficiency and sustainability in smart buildings
necessitates advanced Al-driven methods for adaptive control and predictive mainte-
nance. This study explores the application of Spiking Neural Networks (SNNS) to event-
driven processing, real-time anomaly detection, and edge computing-based optimization
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oyl A=ola

University of Tabuk
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Cell n real-time

Predictive Analytics and LLMs for
Manufacturing Efficiency
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Utilities Timeseries
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SCADA/Asset
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SCADA
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Plant
Metering
loT
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-

Industrial Energy Forecasting using Machine Learning and
Plant Activity Metrics

Andrew i, Mol S Lindsey Vil Al Wllizmsos, and R Findeo Coea’
Tesside Universit Mddlsbrongh, T51 3B, UK “Tascomp Lid., Stockion

usingloT, o
ption and (i) adaptive, real that
can respond to live npmunna.\ enerzy data streams, allowing

ey use 2nd flows

e i o o b s

visualisation and analytics tools, 2 framework which meets

these ruienmats it more mcm to be capable to provide
urate summaries for

ot provie maghts Tt pent emery we o oy asake

optimization, and efficiency metrics, and for predictive

support these requirements is the focus of fhe curtent work.

+ Spesiical, e focus is pricipally upon enerey consumption

modelling and forecasting witain a commercial SCADA
platform, which can integrete enerey monitoring devices and

- LINTRODUCTION

Energy consumption is a eriical factor in the operai

B e o e e o b e whae

u fuctuating machine usage and varying production demand:
contibute o significant variations in epergy costs [1[2]. In an

-
UI

ry where margins are often tight, the ability o accurately
predet nd opimze exegy conmimpin s sy

Energy Consumption Modeling and Forecasting for
Commercial Industrial Manufacturing Applications

Michacl Short"*, Andrew Kidd, Ghazal Salimi', Gectika Aggarwal', Ruben Pincdo-Cucaca’, Alan Williamsor’,
Ashley Ti Asockis Selvalour

important for maintaining compeitiveness and sustainability
i, decabomtion o o 1 et vy 223
intemational net zero commitments requires & multi-fceted

£
8
E

plant
‘monitoring and control devices and signal data sreams using
10T concepts (see, ez [7] for further information). Although
focus ofthe curent work is monitoring and forecasting of plant
lecticty consumpton data the meliocs axd tols poposed

use of appropriate metering devices.

Rect stancemets i wiil itligce (A) b
ienificant

s 2o ndusiel sctors[£1]. I he cure g o o Fourt

lndustial Revoltion (IR o Insy 40, to mligenty
‘amalyse data and develop smart and automated spplications,
antifcial intelligence (AI) (and in_particalar machine learning
(ML) and system identiication techniques) has shown great
promise [S]. By leveraging machine learning models, AT can
wmalye ralime machne sctivty dih and explee

pproach, e vl spect of wich o poflne wd  Comeinio

(automated and manual) to merease. mzlgv efficiency [1][3][6]
Ths s of suresang mporatce w e

et g sope 12 md 3
e e it s T

‘Traditional approaches to energy management have often

relied on course-grained historical data — typically thoush
billng meters located at site or unit level - and static

lopen 1 energy
isualization profiling twolbo) project, caicd
contéxt of the Fast Suant Tanovation Challnge Compet
ype

L INrkopucTion
o the United Kingdom, indusry sccounts for roughly

b o miored e o s o
accuracy: typically, with much higher aceuracy than can be
achieved with traditional stati, linear methods [3, 10]

As such, the energy forecasting tools and procedtures
described make heavy use of AL riven machine leaming and
system  identification  techniques.  Benchmarking  and
performance evaluation of the forecasting and optimization
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Quarterly kWh (initial) prediction using (simple) linear regression model
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BSW Shift 8th - Power (kW) Predictions: model 2.18 (Exponential GPR)

Prodigy SCADA
. 1/0 Signals
Industrial loT (IPMeb) ‘
500 [— —a - Process Edge @/
, . Predicted .Energy Signals Interface S
400 — 1 UaL o 1 — S
300 — | ' Advanced Process/Energy Control and Optimisation
200 " L
= 1 :
. : [ _ Signal/Energy _
s . o = o Model  Analytes
100 = - V. Visualisation
1 1 1 I | 1 1 1 i | 1 1 1 1 J = !
0 500 1000 1500
time (mins)

Healthcare
tees.ac.uk/netzero Facilities
Management



R -
=TT Smart Recycling

INNOVATION
CENTRE

Healthcare
Facilities
Management



R Interactive Learning Environment
LD U Teesside for Cobots (JARVIS)
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LMM & Al Agent Supervisory System Context and Robot Execution: Telemetry Logging

TRAINER MOTION - Plans steps - Torque limits Governance Layer || -R0S2 - Run Report (JSON)
CONTROLS - Generates tool calls | | - Collision checks - SQL/RAG data pools | | - Isaac Sim digital twin | | - Performance Metrics

- Document actions - Reject invalid calls - Human-in-the-loop - Data bridge o Robot | | - Return Data to LMM
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* Deployment of  advanced loT  technologies,
standardized cloud-based tracking and analytics

framework for batteries;

» Provision of vendor-independent upstream battery
health assessment and recycling decision support
framework for handling EoL EV (and other) batteries.

 Upstream tech platform prototyping NZIIC,
downstream processing in Devon.

in

altllium

clean technology

Flowchart of EV battery tracking, classification & sorting

Smart EV Battery Recycling

Physical Twin

[ Electric Vehicle Batteries (Multiple Manufacturers) ]

l

¥

@ '"rectiond QR Code | Electrical
~ ) Physical Scanning, Measurements
Y Measurements GPS & GIS & Analytics
. BIN, Manufacturer, Electrical
S::'yst'cil :‘::Ithri& Generation, Model, Capacity, SoC/SoH J,
uctura egrity Location & Usage History /RUL . .
Digital Twin
. loT/Cloud-based Data
| Warehousing & Decision Support —
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regulatory Business
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Database e
Storage 2nd Life el Decision Support
Other Storage
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LIVE CELLDATA

Disassembly and Thermally-Aware
Discharge

Teesside
University
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Smart Controls for Electrified
Marine Propulsion
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Home : MetZero + Mews releases o Helping make more sustainable snacks

Helping make more sustainable
shacks

(223 October 2024 W @TeessideUni

Experts from Teesside University are helping make one of the UK’s most popular snack brands
become more environmentally sustainable.

members of the KP Snacks Ltd. IETF project team at Teesside University's Net Zero Industry Innovation Centre:

The academics are working alongside KP Snacks Ltd. to investigate ways in which hydrogen can be incorporated
into its production processes

KP Snacks Ltd., which has a production facility in Billingham, manufactures some of the UK's most recognisable
snack brands including Hula Hoops, McCoy's and Skips.

To meet its net zero ambitions, KP Snacks Lid. is looking at ways in which hydrogen can be substituted for natural
gas within its production lines.

Teesside University, through its Net Zero Industry Innovation Centre (NZIIC), is working with the company to
investigate the best way it can reduce its emissions by switching to the aiternative fuel

Combusion temperature (°C)

29% IEEE Intemational Conference on Circuits, Systems, Communications and Computers (CSCC) 2025

Modelling, Control Design and Validation for an
Industrial Dual-Fuel Combustion Unit

Meesside University. Middlesb
JK. SAACKE Combusi

Hamad", Craig Tether’, Philipp Sehonberzer’ and Katerina Nika®
2 wpen Lane Industrial Estate. Billingham TS23 4DU
Road. Havant, Hampshire PO9 1A, UK

dered from a dy a persp
Following a study of existing (natural gas feled) process
nodel is obiained

ental bumer.

i to obiain accurate linear

arious du
oil and product
ombuston are comsidered  Simulation results show effective behavior under stndard
rol perspective. For small  feedback (PID) control approaches. with good potential for
dynamics performance _enbancement using  DCS.
Practical aspects are discussed along with
furure work.

of a proposed
from'a dynamic mor

scheduled cascade, regulatory control strategy for varions dual

under the developed control approaches, with good potential for
further gain-scheduling. performance_enhiancemens. Practical
implementation aspects are discused along with future work.

Index Terms—nd rhonisation, alternative. fuels,

" dush cophy is described
system dentification, egulatory controls, net 71

and initial validation testing using
simulation is described in Section V. Section VI presnts

L INTRODUCTION conclusions and outlines areas for funure work;

2200

Smart Controls for Industrial
ual-Fuel Combustion

Department for
Energy Security
& Net Zero

HEAT AND CONTROL
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.@ao Automated Analytics for Non-Linear
e, () B, Plant Modeling

CENTRE

3D Scatter Plot of Efficiency

K1 + z=5)ee™S | -
1+

) =

Combustor, heat exchanger,
and fryer HT dynamics are
non-linear — but can be locally
linearized

AduaPy3

K, p, d and z vary with local operating point: the global
system model has averaged nearer the lower efficiency
end during the measurement period.
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e Automated Digital Control Design
e, () B, for Non-Linear Plant
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« Efficiency and HT lags (local linear model properties) are
now a function of the CH4 / H2 blend 6, with0 < 6 <1, as
well as fuel flow and air/fuel ratio.

1800 r

1600

Combusion temperature (°C)

1400

1200

« Maximal fuel/air efficiency points automatically mapped o SO o H

1000

as convex surface dependent upon commanded

Air Access ratio A

combustion mixture temp and fuel blend, and partitioned
using clustering techniques.

» Gain-scheduled PI regulators synthesis for
primary/secondary air flow, H2 and CH4 flow.
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Type 1 Carbon emissions drop to
effectively zero for 100% Hydrogen

In terms of SOx and NOx emissions,
the introduction of H2 has no impact
on the former as there is no increase
in sulfur content in the combustor;
negligible increase in the latter.
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A Everyone here today can strive towards positive change, embrace science
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INNOVATION
CENTRE

tees.ac.uk/netzero

University

oW U Teesside and education, and help to innovate a clean, sustainable digital future!

Digitalization, informatics and
decarbonisation are redefining industry and
society and delivering impactful change.

We are on the verge of transformative
technology use becoming standard in
intelligent buildings, which can make
significant gains in supporting
decarbonisation, recycling and improved
sustainability across facilities.

The technology on its own will not do much
— planning is key, and people, skills, and
education are all important factors too!

Enangy Masagamant
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Thank you

For further details, please contact:

Prof Michael Short
? Teesside University, Acting Associate Dean (R&KE)
—

z

m.short@tees.ac.uk
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